Should i take creatine and pre workout

If you’re wondering if it’s safe to mix your creatine in your pre-workout before you hit the gym, you’ve come to the right place.

You can mix creatine with pre-workout without adverse side effects or interference effects between ingredients.

But do you need to mix creatine with your pre-workout, and are there any additional benefits when doing so?

What Is Creatine?

Creatine is a molecule that is stored within the muscle. It binds to another molecule named phosphate to create phosphocreatine or PCr for short. PCr plays a vital role in replenishing the muscles’ energy to contract.

Adenosine triphosphate, ATP for short, is the primary molecule used by the muscles as energy to contract. It is triphosphate because it has three phosphates. When ATP is used, it becomes adenosine diphosphate (ADP) as in two phosphates. To generate ADP back to ATP, it needs another phosphate molecule.

The fastest way to do this is with the surrounding phosphate molecules bound to creatine. The more PCr, the more phosphates are available to replenish energy quickly. This is what leads to being able to perform more reps at a given load and improve maximal strength [1].

Essentially, more creatine equals more phosphates, resulting in greater available energy for the working muscles.

Should i take creatine and pre workout

Individual data for FFM in the POST-SUPP group.

Full size image

Figure 2

Should i take creatine and pre workout

Individual data for FFM in the PRE-SUPP group.

Full size image

Dietary variables

The macronutrient intake for the PRE-SUPP and POST-SUPP groups are summarized in Table 3. There were no significant differences between the groups. On average, both groups consumed a diet of 39-40% carbohydrate, 26% protein, and 35% fat. Both groups consumed 1.9 grams of protein per kg body weight.

Table 3 Dietary intake

Full size table

Discussion

The results from this study suggest that consuming creatine monohydrate post exercise may be superior to consuming it pre exercise with regards to improving body composition (i.e. gains in FFM, loss of FM). This is the first investigation to demonstrate that the timing of creatine intake affects the adaptive response to exercise. When subjects were pooled together, the gains in fat-free mass and muscular strength in the current investigation were similar to others. Rugby union football players who supplemented daily with creatine monohydrate over an 8-week period decreased fat mass (−1.9 kg) and increased lean tissue (+1.2 kg). They also performed better in bench and leg press tests [15]. Older men (71 yrs) who consumed creatine increased lean tissue mass (+3.3 kg) and improved lower body strength as measured using a 1-RM [32]. Using a single-limb training model, men and women who supplemented with creatine after training of the arms increased their muscle thickness. Interestingly, males had a greater increase in lean tissue mass with creatine supplementation than females [4]. In elite male handball players, creatine supplementation for 32 days resulted in an increase in 1-RM bench press (8.30 vs. 5.29 kg; creatine versus control) [33]. These and other investigations indeed show that creatine supplementation in general has a significant anabolic and performance-enhancing effect [34, 35] which is in agreement with the current investigation. Mechanistically, creatine supplementation has been shown to increase muscle fiber size, enhance myosin heavy chain protein synthesis, activate satellite cells as well as increase the concentrations of intramuscular ATP and PCr [6, 7, 12, 36, 37].

However, whether supplement timing has a role in the adaptive response vis a vis creatine has not been previously investigated. Certainly, the most important aspect of the current investigation is that post workout supplementation of creatine may indeed be superior to pre workout supplementation. Data on protein and amino acid supplementation indicate that indeed the pre, during and post workout window are important times to consume nutrients though some studies demonstrate a neutral effect [20–24, 38]. One study examined the effects of a solution of whey protein consumed either immediately before exercise or immediately following exercise. They found no difference in amino acid uptake between the groups [18]. In six subjects (3 men, 3 women) that randomly consumed a treatment drink (6 g essential amino acids, 35 g sucrose) or a flavored placebo drink 1 hour or 3 hours after a bout of resistance exercise, investigators found no difference in the anabolic response whether the drink was consumed 1 hour or 3 hours post exercise [39]. Indeed, others have found that timed protein supplementation immediately before and after exercise does not further enhance muscle mass or strength in healthy elderly men who habitually consume adequate amounts of dietary protein [40]. Also, timed protein-supplement ingestion in resistance-trained athletes during a 10-week training program does not further enhance strength, power, or body-composition changes [41].

On the other hand, consuming an essential amino acid solution immediately before resistance exercise elevates muscle protein synthesis to a greater extent than when the solution is consumed after exercise. The investigators postulated that this may be due to an increased delivery of amino acids to the leg [29]. Clearly, issues related to blood flow would not be advantageous to the POST-SUPP group in the current study.

Another study investigated the importance of immediate (P0) or delayed (P2: 2 hours post exercise) intake of an oral protein supplement upon muscle hypertrophy and strength over a period of resistance training in elderly males. In response to training, the cross-sectional area of the quadriceps femoris muscle and mean fiber area increased in the P0 group, whereas no significant increase was observed in P2. These investigators found no difference in the glucose or insulin response at P0 or P2, thus, it is not likely that differences in the hormonal environment contributed to the difference in muscle mass gain. Thus, the early intake of an oral protein supplement after resistance training is important for skeletal muscle hypertrophy [42].

Perhaps the seminal study vis a vis nutrient timing compared taking a protein-carbohydrate-creatine supplement either immediately pre and post exercise (PRE-POST) or in the morning and evening (MOR-EVE). Indeed the PRE-POST group demonstrated a greater increase in lean body mass and 1-RM strength in two of three assessments. Furthermore, type II muscle fiber cross-sectional area was larger in the PRE-POST group as well as intramuscular concentrations of creatine and glycogen [25]. Data from this investigation showed the intramuscular creatine and glycogen concentrations were greater in the PRE-POST versus MOR-EVE groups. Thus, taking the exact same supplement (but timed pre and post exercise) is significantly better than consuming it in the morning and evening.

Our investigation did not involve the use of protein, carbohydrate or amino acids. Whether creatine uptake is truly sensitive to timed intake is not entirely known despite the superior gains in the POST-SUPP group. Moreover, it is entirely possible that the difference in body composition and muscular strength between the two groups was the result of a small sample size. One individual in the POST-SUPP and three individuals in the PRE-SUPP group experienced a minor reduction in FFM. With regards to 1-RM bench press performance, two subjects in the PRE-SUPP group showed either no change or a decline in strength; on the other hand, only one subject in the POST-SUPP group showed no change in strength. All other subjects experienced an increase in strength.

The use of recreational bodybuilders in the current investigation is advantageous because it is difficult for highly trained individuals to experience an increase in FFM or muscular strength in the time frame allotted for this study. Nonetheless, of the 19 subjects that completed the study, 16-21% were non-responders regarding muscular strength and FFM. It should be noted that the nutrient intake (kcals, carbohydrate, fat and protein) was similar between the groups. In fact, each group consumed a high protein diet (1.9 grams of protein per kg bw daily); thus, it is not likely that dietary factors caused the discrepancy in the adaptive response to creatine supplementation and resistance training. Nevertheless, another consideration to take into account would be that because these recreational bodybuilders were already consuming large quantities of protein, this could have affected the results (i.e. they could already have a high amount of creatine stored intramuscularly and this may have blunted the results).

In conclusion, post workout supplementation with creatine for a period of 4 weeks in recreational bodybuilders may produce superior gains in FFM and strength in comparison to pre workout supplementation. The major limitations of this study include the small sample size as well as the brief treatment duration. Future studies should investigate creatine supplementation using resistance trained individuals for a longer duration.

References

  1. Aguiar AF, Januario RS, Junior RP, Gerage AM, Pina FL, do Nascimento MA, Padovani CR, Cyrino ES: Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur J Appl Physiol. 2013, 113: 987-996. 10.1007/s00421-012-2514-6.

    Article  CAS  PubMed  Google Scholar 

  2. Rawson ES, Stec MJ, Frederickson SJ, Miles MP: Low-dose creatine supplementation enhances fatigue resistance in the absence of weight gain. Nutrition. 2011, 27: 451-455. 10.1016/j.nut.2010.04.001.

    Article  CAS  PubMed  Google Scholar 

  3. Gotshalk LA, Kraemer WJ, Mendonca MA, Vingren JL, Kenny AM, Spiering BA, Hatfield DL, Fragala MS, Volek JS: Creatine supplementation improves muscular performance in older women. Eur J Appl Physiol. 2008, 102: 223-231.

    Article  CAS  PubMed  Google Scholar 

  4. Chilibeck PD, Stride D, Farthing JP, Burke DG: Effect of creatine ingestion after exercise on muscle thickness in males and females. Med Sci Sports Exerc. 2004, 36: 1781-1788. 10.1249/01.MSS.0000142301.70419.C6.

    Article  CAS  PubMed  Google Scholar 

  5. Cooke MB, Rybalka E, Williams AD, Cribb PJ, Hayes A: Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr. 2009, 6: 13-10.1186/1550-2783-6-13.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Spillane M, Schoch R, Cooke M, Harvey T, Greenwood M, Kreider R, Willoughby DS: The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J Int Soc Sports Nutr. 2009, 6: 6-10.1186/1550-2783-6-6.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J: International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007, 4: 6-10.1186/1550-2783-4-6.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mendel RW, Blegen M, Cheatham C, Antonio J, Ziegenfuss T: Effects of creatine on thermoregulatory responses while exercising in the heat. Nutrition. 2005, 21: 301-307. 10.1016/j.nut.2004.06.024.

    Article  CAS  PubMed  Google Scholar 

  9. Ziegenfuss TN, Rogers M, Lowery L, Mullins N, Mendel R, Antonio J, Lemon P: Effect of creatine loading on anaerobic performance and skeletal muscle volume in NCAA Division I athletes. Nutrition. 2002, 18: 397-402. 10.1016/S0899-9007(01)00802-4.

    Article  CAS  PubMed  Google Scholar 

  10. Mihic S, MacDonald JR, McKenzie S, Tarnopolsky MA: Acute creatine loading increases fatfree mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exerc. 2000, 32: 291-296. 10.1097/00005768-200002000-00007.

    Article  CAS  PubMed  Google Scholar 

  11. Volek JS, Kraemer WJ, Bush JA, Boetes M, Incledon T, Clark KL, Lynch JM: Creatine supplementation enhances muscular performance during high-intensity resistance exercise. J Am Diet Assoc. 1997, 97: 765-770. 10.1016/S0002-8223(97)00189-2.

    Article  CAS  PubMed  Google Scholar 

  12. Volek JS, Duncan ND, Mazzetti SA, Staron RS, Putukian M, Gomez AL, Pearson DR, Fink WJ, Kraemer WJ: Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc. 1999, 31: 1147-1156. 10.1097/00005768-199908000-00011.

    Article  CAS  PubMed  Google Scholar 

  13. Burke DG, Chilibeck PD, Parise G, Candow DG, Mahoney D, Tarnopolsky M: Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med Sci Sports Exerc. 2003, 35: 1946-1955. 10.1249/01.MSS.0000093614.17517.79.

    Article  CAS  PubMed  Google Scholar 

  14. Sakkas GK, Mulligan K, Dasilva M, Doyle JW, Khatami H, Schleich T, Kent-Braun JA, Schambelan M: Creatine fails to augment the benefits from resistance training in patients with HIV infection: a randomized, double-blind, placebo-controlled study. PLoS One. 2009, 4: e4605-10.1371/journal.pone.0004605.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Chilibeck PD, Magnus C, Anderson M: Effect of in-season creatine supplementation on body composition and performance in rugby union football players. Appl Physiol Nutr Metab. 2007, 32: 1052-1057. 10.1139/H07-072.

    Article  PubMed  Google Scholar 

  16. Bemben MG, Witten MS, Carter JM, Eliot KA, Knehans AW, Bemben DA: The effects of supplementation with creatine and protein on muscle strength following a traditional resistance training program in middle-aged and older men. J Nutr Health Aging. 2010, 14: 155-159. 10.1007/s12603-009-0124-8.

    Article  CAS  PubMed  Google Scholar 

  17. Tipton KD, Wolfe RR: Protein and amino acids for athletes. J Sports Sci. 2004, 22: 65-79. 10.1080/0264041031000140554.

    Article  PubMed  Google Scholar 

  18. Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR: Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab. 2007, 292: E71-E76.

    Article  CAS  PubMed  Google Scholar 

  19. Candow DG, Chilibeck PD: Timing of creatine or protein supplementation and resistance training in the elderly. Appl Physiol Nutr Metab. 2008, 33: 184-190. 10.1139/H07-139.

    Article  CAS  PubMed  Google Scholar 

  20. Aragon AA, Schoenfeld BJ: Nutrient timing revisited: is there a post-exercise anabolic window?. J Int Soc Sports Nutr. 2013, 10: 5-10.1186/1550-2783-10-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Stark M, Lukaszuk J, Prawitz A, Salacinski A: Protein timing and its effects on muscular hypertrophy and strength in individuals engaged in weight-training. J Int Soc Sports Nutr. 2012, 9: 54-10.1186/1550-2783-9-54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, Kalman D, Ziegenfuss T, Lopez H, Landis J: International Society of Sports Nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008, 5: 17-10.1186/1550-2783-5-17.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wilson J, Wilson GJ: Contemporary issues in protein requirements and consumption for resistance trained athletes. J Int Soc Sports Nutr. 2006, 3: 7-27. 10.1186/1550-2783-3-1-7.

    Article  PubMed Central  PubMed  Google Scholar 

  24. White JP, Wilson JM, Austin KG, Greer BK, St John N, Panton LB: Effect of carbohydrateproteinsupplement timing on acute exercise-induced muscle damage. J Int Soc Sports Nutr. 2008, 5: 5-10.1186/1550-2783-5-5.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cribb PJ, Hayes A: Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc. 2006, 38: 1918-1925. 10.1249/01.mss.0000233790.08788.3e.

    Article  PubMed  Google Scholar 

  26. Levenhagen DK, Gresham JD, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ: Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab. 2001, 280: E982-E993.

    CAS  PubMed  Google Scholar 

  27. Tipton KD, Ferrando AA, Phillips SM, Doyle D, Wolfe RR: Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol. 1999, 276: E628-E634.

    CAS  PubMed  Google Scholar 

  28. Tipton KD, Ferrando AA: Improving muscle mass: response of muscle metabolism to exercise, nutrition and anabolic agents. Essays Biochem. 2008, 44: 85-98. 10.1042/BSE0440085.

    Article  CAS  PubMed  Google Scholar 

  29. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR: Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001, 281: E197-E206.

    CAS  PubMed  Google Scholar 

  30. Hopkins WG, Marshall SW, Batterham AM, Hanin J: Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009, 41: 3-13.

    Article  PubMed  Google Scholar 

  31. Batterham AM, Hopkins WG: Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006, 1: 50-57.

    PubMed  Google Scholar 

  32. Chrusch MJ, Chilibeck PD, Chad KE, Davison KS, Burke DG: Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc. 2001, 33: 2111-2117. 10.1097/00005768-200112000-00021.

    Article  CAS  PubMed  Google Scholar 

  33. Percario S, Domingues SP, Teixeira LF, Vieira JL, de Vasconcelos F, Ciarrocchi DM, Almeida ED, Conte M: Effects of creatine supplementation on oxidative stress profile of athletes. J Int Soc Sports Nutr. 2012, 9: 56-10.1186/1550-2783-9-56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Jagim AR, Oliver JM, Sanchez A, Galvan E, Fluckey J, Riechman S, Greenwood M, Kelly K, Meininger C, Rasmussen C, Kreider RB: A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. J Int Soc Sports Nutr. 2012, 9: 43-10.1186/1550-2783-9-43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Souza-Junior TP, Willardson JM, Bloomer R, Leite RD, Fleck SJ, Oliveira PR, Simao R: Strength and hypertrophy responses to constant and decreasing rest intervals in trained men using creatine supplementation. J Int Soc Sports Nutr. 2011, 8: 17-10.1186/1550-2783-8-17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Willoughby DS, Rosene J: Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc. 2001, 33: 1674-1681. 10.1097/00005768-200110000-00010.

    Article  CAS  PubMed  Google Scholar 

  37. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M: Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol. 2006, 573: 525-534. 10.1113/jphysiol.2006.107359.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lemon PW, Berardi JM, Noreen EE: The role of protein and amino acid supplements in the athlete’s diet: does type or timing of ingestion matter?. Curr Sports Med Rep. 2002, 1: 214-221. 10.1249/00149619-200208000-00005.

    Article  PubMed  Google Scholar 

  39. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR: An oral essential amino acidcarbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000, 88: 386-392.

    CAS  PubMed  Google Scholar 

  40. Verdijk LB, Jonkers RA, Gleeson BG, Beelen M, Meijer K, Savelberg HH, Wodzig WK, Dendale P, van Loon LJ: Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am J Clin Nutr. 2009, 89: 608-616. 10.3945/ajcn.2008.26626.

    Article  CAS  PubMed  Google Scholar 

  41. Hoffman JR, Ratamess NA, Tranchina CP, Rashti SL, Kang J, Faigenbaum AD: Effect of protein-supplement timing on strength, power, and body-composition changes in resistancetrained men. Int J Sport Nutr Exerc Metab. 2009, 19: 172-185.

    CAS  PubMed  Google Scholar 

  42. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M: Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001, 535: 301-311. 10.1111/j.1469-7793.2001.00301.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The creatine monohydrate (Creatine Plasma™) was provided by VPX® Sports, Davie FL. Many thanks to Jeff Stout PhD for running the stats on this project.

Author information

Authors and Affiliations

  1. Exercise and Sports Sciences, Nova Southeastern University, 3532 S. University Drive, University Park Plaza Suite 3532, Davie, FL, 33314, USA

    Jose Antonio & Victoria Ciccone

Authors

  1. Jose Antonio

    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Victoria Ciccone

    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jose Antonio.

Additional information

Competing interests

Jose Antonio PhD was a former sports science consultant to VPX® Sports.

Authors’ contributions

VC and JA contributed significantly to all aspects of this study. Both authors read and approved the final manuscript.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Antonio, J., Ciccone, V. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J Int Soc Sports Nutr 10, 36 (2013). https://doi.org/10.1186/1550-2783-10-36

Should I take creatine first or Preworkout?

Conclusions. Creatine supplementation plus resistance exercise increases fat-free mass and strength. Based on the magnitude inferences it appears that consuming creatine immediately post-workout is superior to pre-workout vis a vis body composition and strength.

Should I take creatine for both pre and post

When creatine runs low, performance can decline. For this reason, it's best to take creatine both before a workout and then after for recovery. Summary: Creatine is a molecule found in the muscles and helps in the release of energy for use during anaerobic exercise.